

Serie 11

Given constants

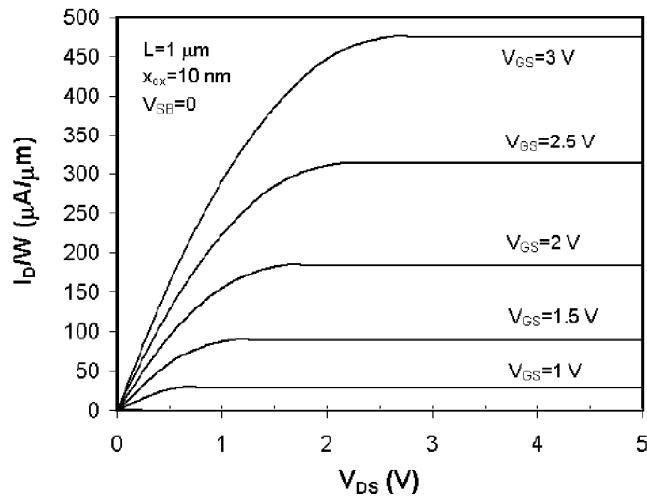
$$\begin{aligned}kT/q &= 25.9 \text{ [mV]} @ T = 300 \text{ [K]} \\n_i(Si) &= 1.5 \cdot 10^{10} \text{ [cm}^{-3}\text{]} @ T = 300 \text{ [K]} \\q &= 1.60 \cdot 10^{-19} \text{ [C]} \\\epsilon_0 &= 8.85 \cdot 10^{-14} \text{ [F/cm]} \\\epsilon_{Si} &= 11.7 \cdot \epsilon_0 \\\epsilon_{SiO} &= 3.9 \cdot \epsilon_0\end{aligned}$$

Exercise 01

You have access to the specifications of an industrial CMOS technology that we want to consider for the design of an IC operating at $T = 85 \text{ [}^{\circ}\text{C]}$. For a long-channel NMOS transistor, we have: an off current $I_{off} = 1 \text{ [nA}/\mu\text{m]}$, a threshold voltage $V_{th} = 0.5 \text{ [V]}$, a subthreshold slope $SS = 70 \text{ [mV/dec]}$, all at $T = 25 \text{ [}^{\circ}\text{C]}$. The current I_{off} is the current I_D at $V_{GS} = 0 \text{ [V]}$ and $V_{DS} = V_{DD}$, normalized by the channel width W . The subthreshold slope is defined as $SS = \frac{\partial V_{GS}}{\partial (\log_{10} I_D)} = \ln(10) \cdot \frac{kT}{q} \left(1 + \frac{C_d}{C_{ox}}\right)$ (in subthreshold, of course). The following formula holds:

$$I_D(V_{th}) = I_{off} \cdot 10^{\frac{V_{th}}{SS}}$$

Extract I_{off} at $T = 85 \text{ [}^{\circ}\text{C]}$. Assume that the threshold voltage of your MOSFET changes with temperature according to $\frac{dV_{th}}{dT} = -4 \text{ [mV}/^{\circ}\text{C]}$, over the range of interest for your application.


Hint: exploit the fact that the current $I_D(V_{th})$ is defined constant, independently of V_{th} .

Exercise 02

Consider the output characteristic $I_D(V_D)$ (reported below) of a long-channel NMOS transistor, for the case where its body contact (B) is shorted with the source (S) to ground (0 [V]). The channel length is $L = 1 \text{ [\mu m]}$ and the gate oxide thickness is $t_{ox} = 10 \text{ [nm]}$. Answer the following questions:

- Assuming that the MOSFET has quasi-ideal long-channel transistor behavior, estimate its threshold voltage V_{th} .
- Estimate the electron mobility μ_n of its inversion channel at low transverse field. How does this value compare with the volume electron mobility?

- Estimate its transconductance g_m at $V_{GS} = 3 [V]$ and $V_{DS} = 3 [V]$ for $W = 10 [\mu m]$, under the same assumption of the first point. Comment on the possibility of choosing the transconductance value by design and compare it with the value of a bipolar transistor.
- Estimate the capacitance C_{GS} for the same V_{GS} , V_{DS} and W . In saturation: $C_{GS} \approx \frac{2}{3} W L C_{ox}$.

